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Numerical evaluation of the flexural forced vibration of a cantilever beam having a

transverse surface crack extending uniformly along the width of the beam was

performed to relate the nonlinear resonances to the crack presence, location, and depth.

To this end, the qualitative characteristics, namely phase portrait distortions, sub- and

line were considered. Furthermore, quantitative parameters, such as the eccentricity

and the excursion of the orbit, and the harmonic amplitude in the spectrum were

measured. Then, an identification procedure was proposed which was based on the

intersection of constructed surfaces which allowed to identify the structural damage.

The acceleration record of the beam tip was sufficient to detect the existence of the

crack and to identify crack depth and site.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The presence of a crack could not only cause a local variation in the stiffness, but it could affect the mechanical
behaviour of the entire structure to a considerable extent. For these reasons, there is a need to understand the dynamics of
cracked structures. The vibration characteristics of cracked structures can in fact be useful for an on-line detection of cracks
(non-destructive testing) without actually dismantling the structure [1]. Therefore, the development of structural integrity
monitoring techniques is received increasing attention in recent years. Among these monitoring techniques, it is believed
that the monitoring of the global dynamics of a structure offers favourable alternative if the on-line (in service) damage
detection is necessary. In order to identify structural damage for vibration monitoring, the study of the changes of the
structural dynamic behaviour due to cracks is required for developing the detection criterion [2].

Among the techniques employed for crack detection are vibration-based methods, which offer an effective and fast
means of detecting fatigue cracks in structures [3].

Most of the techniques are based on vibration measurement and analysis because, in most cases, vibration based
methods can offer an effective and convenient way to detect fatigue cracks in structures. Generally, vibration based
methods can be classified into two categories [4]: the linear approach and the nonlinear approach. By linear approaches
the presences of cracks in a target object are detected through the monitoring of changes in resonant frequencies [5] or in
damping factors [6] or in mode shapes [7]. However, some researches have shown the linear detection procedures do not
always come up to practical requirement because of low sensitivity to defects [8].
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Nomenclature

a crack depth
A area of the cross-section
b distance of the spring from the built-in end of

the beam
B bending stiffness of the intact beam
C shear stiffness of the intact beam
ddam

max maximum displacement of the damaged
system

ddam
min minimum displacement of the damaged

system
dmax maximum displacement of the system
dmin minimum displacement of the system
D total excursion on the displacement axis
Dv variation of the total excursion on the dis-

placement axis
ed the eccentricity of the orbit with respect to the

origin on the displacement axis in the phase
portrait

E Young’s modulus
fc first natural frequency of the beam when the

crack is closed
fo first natural frequency of the beam when the

crack is open
fb first bilinear natural frequency of the beam

when the crack is breathing
fF frequency of the driving force
F intensity of the driving force
G shear rigidity of the material
h height of the cross-section
hr relative amount of magnitude of super- or sub-

harmonic components with respect to the
amplitude of the fundamental component

Hf amplitude of the fundamental component
Hs magnitude of super- or sub-harmonic compo-

nents
I indicator of efficiency in damage detection
Ix inertia moment of the cross-section with

respect to the x-axis
J indicator of comparison among structural

models
kc stiffness of the bilinear spring when the crack

is closed
ko stiffness of the bilinear spring when the crack

is open

L beam length
m mass of the equivalent single-degree-of-free-

dom oscillator
mb mass of the equivalent single-degree-of-free-

dom oscillator when the crack is breathing
mc mass of the equivalent single-degree-of-free-

dom oscillator when the crack is closed
mo mass of the equivalent single-degree-of-free-

dom oscillator when the crack is open
n order of the harmonic component
nh number of harmonic components
np number of crack positions
ns number of crack severities
nC number of damage parameters
p non-dimensional position of the crack along

the z-axis
s crack severity
Tc first natural period of the beam when the crack

is closed
To first natural period of the beam when the crack

is open
Tb first bilinear natural period of the beam when

the crack is breathing
w width of the cross-section
x, y, z spatial coordinates
dc deflection of the beam tip loaded by a

statically applied force with the same ampli-
tude of the sinusoidal excitation when the
crack is closed

do deflection of the beam tip loaded by a
statically applied force with the same ampli-
tude of the sinusoidal excitation when the
crack is open

Z ratio between driving and bilinear frequencies
n Poisson’s ratio
r mass density of the beam
w shear factor of the cross-section
W set of the damage parameters
C list of the values of the damage parameters
C value of a single damage parameter
oc circular frequency of the equivalent single-

degree-of-freedom oscillator when the crack is
open

oo circular frequency of the equivalent single-
degree-of-freedom oscillator when the crack is
closed
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There are two main categories of crack models used in the methods: open crack models and breathing crack models.
Most researchers have assumed that the crack in a structural member is open and remains open during vibration. This
assumption was made to avoid the complexity resulting from nonlinear behaviour when a breathing crack is presented.
Nevertheless, during vibration, a crack will open and close due to an externally applied loading. During the vibration of a
structure, edges of the crack come into and out of contact, leading to sudden changes in the dynamic response of the
structure. This phenomenon is known as the breathing process of the crack. By introducing the concept of a breathing
crack, an intensive investigation can reveal small changes in the dynamic response of the cracked element. These changes
in dynamic response can be useful for detection of cracks [9].

Chondros et al. [10] evidenced that using an open crack model assumption to interpret vibration measurements for a
fatigue breathing crack will lead to incorrect conclusions, in particular one would presume that the crack severity is
smaller than what it really is. Only a few papers were devoted to the detection of actual fatigue cracks, due perhaps to the
difficulty to generate a true fatigue crack and to the technical simplicity to carve a slot. Andreaus and Baragatti [11]
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addressed the initiation and propagation of fatigue cracks in metallic beams and their influence on the free-vibration
dynamic response; even if that was a ‘‘linear’’ method, it seemed to be able to account for and to detect the presence of the
so-called ‘‘breathing’’ crack. These features opened the door to future developments towards nonlinear detection methods.

Nonlinear effects make the response of beams with a fatigue breathing crack more difficult to predict than that of a
notched beam. However, on the other hand, their presence accentuates the difference of the damaged dynamics from the
undamaged one. Then, if a vibration measure which is sensitive to presence of nonlinear behaviour is selected, the
identification of a fatigue crack, which is more likely to appear on real structure, is more easy to achieve than that of an
always open crack [12].

When a cracked object is subjected to a single harmonic input, main distinctive features of such a vibration system are
the appearance of nonlinear characteristics in the dynamic response, such as nonlinear distortions of time-histories, super-
harmonic components, and sub-harmonic resonances. In summary, the nonlinear effect analysis based methods would be
much more sensitive to presences of cracks than the linear vibration based methods. Thus, increasingly over recent years,
attentions have been focused on the investigations of the nonlinear effects caused by the presence of breathing cracks and
associated applications to the problem of damage detection.

The papers [2,13–18] present methods for analysis of steady-state vibration of a beam with breathing cracks, which
open and close during vibration. Some useful conclusions for diagnosing cracked beams systems are proposed in [19]. An
approach has been proposed in [4] for nonlinearity detection in vibrating systems with multiple degrees of freedom, which
is based on the concept of nonlinear output frequency response functions; it requires testing on inspected systems twice
with the applied input forces differing in strength in the two tests. The approach determines the position of the nonlinear
component in an mdof system directly from the applied input forces and the corresponding responses of the masses in the
system.

From the above literature review it is observed that the models used for breathing cracks are either one-dimensional
continuous or discrete models or bilinear single degree of freedom or two- or multi-degree of freedom systems. In the close
vicinity of the crack, the stress and displacement field is three-dimensional. Therefore, the existing models cannot
accurately simulate the beam near the crack. To accurately model the three-dimensional stress and displacement fields
near the breathing crack, a contact model with three-dimensional finite element needs to be used. However, if the whole
beam is modelled, using three-dimensional finite elements the computational effort is high. As a compromise, a contact
model for a breathing crack with two-dimensional finite elements is proposed herein. The proposed model can be
extended to three-dimensional models of cracked structures.

The objective of the work presented in [20] is to study the relative amplitudes of the harmonics as their positions vary
along the frequency axis when the exciting frequency is changed, in a bi-dimensional model of a cantilever beam with root
crack. This study is useful for the detection of cracks in beams in the sense that it demonstrates that the response spectrum
may be more sensitive to the presence of cracks for some excitation frequencies.

The proposed approaches therefore have potential in the fault diagnosis of mdof systems and structures, but they are
limited only to the detection of the presence of damage.

Detection of fatigue cracks in flexible bars by the super-resonant vibration method proposed in [21,22] may be carried
out by estimating the size of the fatigue crack by the value of the spectral ratio between the second or the third and
fundamental harmonics, using a preliminary constructed calibration curve.

The main idea of the procedure proposed in [23,24] for crack location and size estimation is based on the determination
of the vibration response nonlinearity around the second superharmonic and the one-half subharmonic resonances at
different parameters of driving force. Moreover, the abrupt change of the nonlinearity of vibration response when driving
force is applied close to the crack indicates its location. In such a way the procedure of damage detection allows to estimate
both the crack size and location in beams.

The paper proposed herein is a novel method inasmuch it is a fully identification procedure allowing to qualitatively
detect the presence of damage and quantitatively determine the extension and the position of a fatigue crack; moreover,
the bi-dimensional model of the cantilever beam accounts for contact and detachment of the crack interfaces. Damage
indicators physically related to the nonlinear features of the forced response under harmonic excitation are introduced,
namely the ratios between the second and third superharmonic and one-half subharmonic components with respect to the
fundamental one, the eccentricity of the orbit with respect to the origin on the displacement axis of the phase portrait,
the variation of the total excursion of the damaged system with respect to the total excursion of the intact system on the
displacement axis of the phase portrait. Using preliminary constructed calibration surfaces permits to simultaneously
evaluate crack size and location by solving a system of two quadratic equations; the reliability of these results can be
checked by comparing them with those one obtained by another independent system. Even very small cracks can be
identified due to the significant magnitude of the signal distortions involved. Moreover, the driving force may be applied
not necessarily near the (presumably unknown) position of the crack, and only one acceleration measure is needed in any
position along the beam.

The purpose of the present paper was to develop the analytical approach enabling the simulation of vibration of a beam
with a closing edge transverse crack in order to solve direct (determination of dynamic characteristics of a beam at given
crack parameters) and inverse (estimation of crack parameters by the known values of corresponding dynamic
characteristics) problems of damage diagnostics. The distortions of the orbits in the phase plane and the relative
amplitudes of the harmonics, as their positions varied along the frequency axis when the exciting frequency is changed,
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were chosen as the dynamic characteristics to be investigated. The efficiency of the proposed method was verified by a
numerical example of a cracked beam under cantilever boundary conditions. Three different numerical models were
considered for discussion in this paper. The first one is a two-dimensional finite element model, which was developed as a
reference model. The second model was a ten-element or equivalently 20-dof cantilevered beam that had the same
dimensions and material properties of first model. Lastly, an equivalent single-dof spring-mass-damper system was
considered for comparison; in fact, at low frequencies the beam structure can be modelled as a single-degree-of-freedom
piece-wise linear system which has different stiffnesses during stretching and compression of the crack.

In the forward problem, the sinusoidal harmonic force was applied on the free end of the beam and harmonic response
was obtained on the force application point; the changes in harmonic responses corresponding to the change in crack
depth and location were evaluated for crack detection analysis. The inverse problem was also solved. To estimate the
position and size of the crack, a simple relation was establish, which related the so-called Nonlinear Damage Indicators
(NDIs), namely excursion and eccentricity of the orbit in the phase portrait and the amplitude of the super- or sub-
harmonics, to the location and depth of the crack. The estimated NDIs increased with crack distance (from the beam tip)
and depth following a four-order polynomial law and therefore the NDIs were used as indicators for crack place and size
evaluation. These results were fitted into a surface in a least squares sense. Both the crack size and position were predicted
from the NDIs recorded numerically by a virtual accelerometer.
2. System models

2.1. Generalities

This problem physically represents a straight beam of length L which contains one single-side edge fatigue crack of
depth a and has a rectangular uniform cross-section of height h and width w, Fig. 1; the cantilever beam is clamped at the
left end and free at the right end. The crack is located at the upper edge of the beam at a distance d from the fixed end and
p=d/L is the dimensionless crack position; the severity s=a/h of the crack is expressed in terms of the ratio between the
depth to the height of the cross-section. Linear isotropic stress–strain material properties are assumed.

A cracked cantilever beam of length L=0.3 m and cross-section w�h=0.02�0.02 m2 was tested and studied by Rizos
et al. [25]; the material is mild steel having Young’s modulus E=206.8 GPa, Poisson’s ratio n=0.3, and mass density
r=7850 kg/m3. The vibration frequencies and mode shapes of the beam containing an edge crack of various sizes at
different positions along the beam were obtained by Kam and Lee [26] from either experiments [25] or finite element
analyses of the cracked beam when experimental data were not available. In the case of the finite element analyses of the
cracked beam, the stiffness matrix of the cracked element proposed by Qian et al. [27] was used to generate the required
data for crack identification.

With the ever increasing sophistication of available equipment more effective models had to be built to better interpret
the experimental results. As far as monodimensional continuous models are concerned, two approaches are considered,
namely continuous and local flexibility. In the continuous flexibility scheme, differential equation and the boundary
conditions are derived for the cracked beam via variational principles [28,2,29]. In particular, the modification of the stress
field induced by the crack is incorporated through a local empirical function which assumes an exponential decay with the
distance from the crack, and includes parameters that had to be evaluated by experiments or using the displacement field
in the vicinity of the crack found with fracture mechanics methods (stress intensity factors). In the local flexibility models
[30,31,25,15,10,32], the main idea in modelling the crack is to introduce a local compliance matrix, connecting
longitudinal, bending and shear forces and displacements near the crack tip; the elements of the local flexibility matrix
describe the reduced stiffness due to the crack by means of the stress intensity factors [33]. Alternatively, the cracked beam
can be discretized via the Finite Element Method by using both 1-D [34,27,35] and 2-D elements [36,37,16,20]. In addition,
the nonlinear behaviour of a beam with a closing crack vibrating in its lowest modes of vibration can be simulated through
multi-degree-of-freedom models with bilinear stiffnesses [36,37,38,15,39].

The mechanical behaviour of an opening crack is different from that of a closing crack. To analyse these behaviours in
fracture mechanics when general time-varying loads are applied is a very complex problem; in fact the stress–strain field
Fig. 1. Cantilever beam with a single-edge crack.
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at the crack tip, the form of the crack interface and the level of the crack’s opening and closing are all required [27]. Thus,
the equations of motion are nonlinear and non-smooth, and, definitively, there is no exact solution of these equations.
Consequently, a numerical method [30,37,16] must be adopted.

While the beam is vibrating, the state of the crack section varies from detachment to compression, i.e. the crack opens
and closes with time. This results in a modification of the crack section stiffness, the extremal values being the stiffness of
the open crack and that of the intact beam. Thus, the nonlinear behaviour of the closing crack introduces the characteristics
of the nonlinear systems. However, for many practical applications, the system can be considered bilinear, and the fatigue
crack can be introduced in the form of the so-called ‘‘breathing crack’’ model which opens when the normal strain near the
crack tip is positive, otherwise it closes [40]. Distinction should be made between the first natural frequencies fc=1/Tc and
fo=1/To, of the two constituent sub-models (the subscripts ‘‘c’’ and ‘‘o’’ mean ‘‘closed crack’’ and ‘‘open crack’’, respectively)
and the first natural frequency fb of the system, the so-called bilinear frequency [13]:

fb ¼
2

TcþTo
¼ 2

fc fo

fcþ fo
(1)

where Tc and To are the natural periods of the two sub-models. Eq. (1) strictly holds for a single-degree-of-freedom
oscillator with a bilinear stiffness; as it will be seen in Section 3.1, Eq. (1) approximates with good accuracy the first
frequency of the beam with breathing crack.

In this paper, for comparison’s sake, the data of Rizos et al. [25] were adopted, and a consistent mass matrix was used in
the dynamical analysis with implicit time integration, provided that the Newmark method and full Newton iteration were
used.

2.2. Two-dimensional finite element model

Herein, the plane-stress elastodynamic response of an edge cracked panel was studied; static and transient dynamic
analyses were performed using a proprietary finite element package ADINA 8.5 [41]. A 2-D solid (plane stress) nine-node
iso-parametric element was chosen to discretize the body and the finite element mesh consisted of 380 elements and 1627
nodes. Two-dimensional contact surfaces were specified to model planar contact behaviour between solid elements at the
crack interfaces [42].

The deflections doo0, dc40 of the beam tip loaded by a statically applied force with the same amplitude of the
sinusoidal excitation were calculated; in the first case the force downloads to open the crack, whereas in the second case it
uploads to close the crack, Fig. 1.

2.3. Contact modelling

Contact surfaces are defined as surfaces that are initially in contact or are anticipated to come into contact during the
response solution. Two-dimensional contact surfaces are formed of a series of linear contact segments and each segment is
bounded by two nodes, Fig. 2. A distinction should be made within these two surfaces between the contactor surface and
the target surface, in as much, in the converged solution, the target nodes can overlap the contactor body and not vice-
versa; in other words, according to the contact condition, the contactor nodes cannot be inside the target body, but the
Fig. 2. Two-dimensional case of contact.
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target nodes can be inside or outside the contactor body. A node of the contactor surface can come into contact with a
segment of the target surface.

In frictionless contact, the possible states of the contactor nodes and/or segments are as follows: (i) the gap between the
contactor node and target segment is open (no contact); (ii) formerly closed gap has opened; a tensile force onto the
contactor node is not possible (tension release); and (iii) the gap between the contactor node and the target segment is
closed; a compression force is acting onto the contactor node.

The finite element approach is used to discretize the governing continuum mechanics equations and the contact
conditions (Fig. 3). To exemplify the formulation of the governing finite element equations, let us consider the two-
dimensional case of contactor and target bodies shown schematically in Fig. 2, where the target segment corresponding to
contactor node k is defined by nodes k1 and k2. The target point kt is the closest point of the target segment k1�k2 to the
contactor node k. By assembling for all contactor nodes the nodal point force vectors, the discretization of the continuum
mechanics equations corresponding to the conditions at time t+Dt gives [41]

fiðuÞ ¼ fe�fcðu,kÞ (2a)

ccðu,lÞ ¼ 0 (2b)

where u, k are the solution variables, namely the nodal point displacements u and the normal traction components k; fi is
the vector of internal nodal forces equivalent to element stresses; fe is the vector of applied external nodal forces; fc is the
nodal force vector, which is obtained by assembling for all contactor nodes the nodal point force vectors due to contact; cc

is the vector of contact conditions the components of which are as many as the contactor nodes.
The incremental finite element equations of motion including contact conditions for solution of Eq. (2) are obtained by

linearization about the last calculated state at time t:

ðKTþKc
uuÞ Kc

ul

Kc
lu Kc

ll

" #
Du

Dk

� �
¼

ftþDt
e �f i�fc

�cc

( )
(3)

where Du and Dk are the increments in the solution variables u and k, KT is the usual tangent stiffness matrix including geometric
nonlinearities, not including contact conditions; Kc

uu,Kc
ul,Kc

lu,Kc
ll are the contact stiffness matrices. It is worth to be noticed that

the vector fe is evaluated at current time t+Dt, while the other matrices and vectors are evaluated at the previous time t.
In order to simplify the notation, the following relations are understood to refer to any contactor node k. Using the

definition of the ‘‘gap function’’ g, that is the (signed) distance from the node k to the target point kt, the conditions for
normal contact can be stated as the Signorini’s conditions for displacement [43]:

gZ0 (4a)

lZ0 (4b)

gl¼ 0 (4c)

Note that the contact force and gap function are of course expressed in terms of the nodal displacements.
Eq. (4) can be interpreted by considering the following cases:
(1)
 No contact: if g40, the equality in Eq. (4c) implies l=0; when there is no contact, all contact tractions must be zero.
Fig. 3.
(2)
 Sticking contact: if l40, the equality in Eq. (4c) implies g=0.
Accordingly, any component of the vector cc which refers to any contactor node k can be written as

ccw ¼ ŵ ðg,lÞ (5)

and the following constraint function can be used [41]:

ŵðg,lÞ ¼
gþl

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g�l

2

� �2

þeN

s
(6)
Fig. 3. Finite element mesh of the 2-D model.
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where eN is very small but larger than zero. Eq. (6) defines a suitable function of g and l such that the solutions of ŵðg,lÞ ¼ 0
satisfy conditions (4) within a reasonable accuracy.

2.4. Solution of nonlinear equations of motion

The solution of the nonlinear dynamic response of the finite element system at hand is obtained using the incremental
formulation presented in Section 2.3, an iterative solution procedure and a time integration algorithm. For notation’s
conciseness, the following symbols are introduced:

U¼
u

k

� �
, F¼

fe

0

� �
, R¼

fiþfc

cc

( )
, K¼

ðKTþKc
uuÞ Kc

ul

Kc
lu Kc

ll

" #

The solution of the equilibrium at time t+Dt requires an iteration procedure: by linearizing the response of the finite
element system about the conditions at time t+Dt, iteration (i�1), the following equations are obtained:

DFði�1Þ
¼ FtþD t � Rði�1Þ

tþD t (7a)

Kði�1Þ
tþDt DUðiÞ ¼ DFði�1Þ (7b)

UðiÞtþDt ¼Uði�1Þ
tþDtþDUðiÞ (7c)

In each iteration an out-of-balance load vector is calculated, Eq. (7a); an increment in displacements is given by Eq. (7b),
and the iteration proceeds until the out-of-balance load vector DF(i�1) or the displacement increments DU(i) are sufficiently
small.

Newmark’s method with d=1/2 and a=1/4 is used for time integration and the robustness of the numerical procedure
has been checked in all the performed analyses.

2.5. Beam finite element model

The study has been performed using a finite element model of the beam (Fig. 4), in which a so-called closing crack
model, fully open or fully closed, is used to represent the damaged cross-section; the model was validated against
experimental results of free vibrations [11]. Intact parts of the beam are modelled by Timoshenko-type finite elements
with two nodes and 2 dofs (transverse displacement and rotation) at each node. To relate the crack length to a local
flexibility parameter, the crack was modelled by a bilinear rotational spring, Fig. 5, of constants kc and ko in the vicinity z=b

of the cracked cross-section, Fig. 4; kc=EIx is the stiffness of the beam when the crack is closed. The stiffness ko when the
crack is open can be identified by equating the tip deflection of the Timoshenko-type beam with reduced local flexibility

do ¼
L3

3B
þ

L

C

� �
þ

b2

ko

� �
F (8)

to the y-displacement of point load of the 2-D FEM model, denoted PL in Figs. 1 and 4; the parameters B=EIx and C=wGA are,
respectively, the bending and the shear stiffness of the beam, whereas A=wh=2�10�4 m2, Ix=wh3/12=24

�10�8/12 m4,
and w=5/6 are, respectively, the moment of inertia with respect to the x-axis, the area, and the shear factor of the
uncracked cross-section; E and G are, respectively, Young’s and Lam�e’s modulus of the material. The beam of Fig. 4 is then
discretized into 15 elements and 17 nodes.

2.6. Single-degree-of-freedom model

As already observed, one can qualitatively see that the global stiffness of the cracked beam depends on whether the
crack is open or closed. Moreover, due to boundary conditions, loading type and crack location the first mode of the cracked
beam’s response is primarily involved, that can be reasonably studied by a simple system with bilinear stiffness.

The system consists of a lumped mass m which makes contact with the linear spring ko when x o0 and with the linear
spring kc4ko when x40. The equations of motion for the system are

m €xþkix¼ 0, i¼ o for x o0 and i¼ c for x40 (9)
Fig. 4. 1-D beam model.
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where the dot indicates differentiation with respect to time. The effective natural frequency fb of this bilinear single
degree-of-freedom system (bsdof) is given by Eq. (1).

Stiffnesses and mass of the bsdof can be identified on the basis of, respectively, compliance and frequency
characteristics of the 2-D FEM model:

ki ¼ F=di, oi ¼ 2pfi, mi ¼ ki=ðoiÞ
2, i¼ c,o (10a)

mbffiðmcþmoÞ=2 (10b)

2.7. Suitability of the simpler models

The spring constants of the bilinear rotational spring in the simpler 1-D model of beam can be identified without
construction of the 2D FE model. In fact, the spring constant in the closing phase is the elastic rigidity EIx of the intact beam
in simple bending, according to the elementary beam theory, and it is not to be necessarily identified on the basis of the
2-D model. On the other hand, the spring constant KR in the opening phase is given in terms of the crack length by the
expression in [44], derived from the linear fracture mechanics:

KR ¼
wh2E

72p s2ð0:6384�1:036sþ3:7201s2�5:1773s3þ7:553s4�7:332s5þ2:4909s6Þ

It leads to the same results obtained by the identification based on the 2-D model, which was used in this paper only for
sample’sake; thus, this simpler model can exist independently without construction of the 2D FE model. As far as the
equivalent sdof model is concerned, it can be identified on the basis of the 2-D FE model or of the independent 1-D beam
model; in any case, the interest and usefulness for the reduced models of structural dynamic systems is perceived in the
literature. The procedure of tuning the parameters of a reduced model, which could be obtained from any full-order model,
allow the studying of more complex scenarios at a fairly low computational costs. In fact, once that the spring constants
have been easily identified for assigned crack size and position, other parameters, e.g. position, frequency and intensity of
the point load, load type and distribution, etc., may be changed and their effects explored in detail.

3. Harmonically forced response

3.1. Generalities

The following non-dimensional parameters were found to be significant: (i) the severity of the crack s=a/h depth-to-
height ratio, (ii) the position of the crack p=d/L distance-to-length ratio, and the excitation-to-system frequency ratio,
Z= fF/fb, where fF is the frequency of the harmonic excitation and fb is the first natural frequency of the system.

The dynamic response of the beam depends on the above listed parameters. Detailed features of the response were
studied for a damage scenario characterized by the following values of the fundamental parameters: severity factor s=0.1,
0.3, and 0.5, position factor p=0.083, 0.267, and 0.467, and driven frequency Z=1/3, 1/2, and 2.

For these damages, free vibration of the 2-D FEM model of the cracked beam after impulsive excitation were
numerically analysed under instantaneous loading. An impulsive force was transversally applied for a very short while at
the tip PL (Fig. 1) of the closed crack, open crack, and breathing crack beams; then, the frequency content of the
y-displacement time-history of the loaded point has been determined via spectral analysis in order to evaluate the lowest
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natural frequencies of the beams [42], Table 1. The numerical results were validated against the experimental ones
[25,26,11]. It is worth to be noted that the predicted values fb for the breathing crack beams coincides with those ones
given by Eq. (1).

Then the forced vibration of the damaged beam with breathing crack was investigated by applying a 100 N sinusoidal
load at the beam tip. The time step was taken about (1/60) times the time-period Tb=1/fb i.e. 0.0001 s. The Discrete Fourier
Transform (DFT) was used to perform spectral analysis of the dynamic response.

3.2. Nonlinear characteristics of the response due to the breathing crack

For each position and severity of the crack, and for each frequency of the driving force, the following results both in time
and frequency domains were determined and analysed with reference to the y-motion of the load point PL (Fig. 1):
�
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�
 displacement of point PC (point near the crack) vs. displacement of point PL (tip point), Fig. 1, the so-called modal line
(Figs. 6c–11c).
For brevity’s sake, due to space limits, only selected cases were reported and commented in this section, in order to
highlight the main nonlinear features of the dynamic response which can be used to detect the presence of damage, as
done in Section 4; the chosen plots allowed to compare the relative performances of the 2-D, 1-D, and sdof models.
Different cases have been presented and discussed by one of the authors and his co-workers in [45] by using different tools
like Poincaré map and bifurcation diagram.

The phase portraits revealed the appearance of strongly nonlinear phenomena: the relevant plots presented evident
distortions, wiggles and recesses. The origin centred ellipse representing the forced response of the undamaged system
transformed into curves characterized by circumvolutions or corner points. The phase portrait distortion is in fact one of
the strongly nonlinear dynamic characteristics of the cracked systems, which was assumed as a first qualitative Nonlinear
Damage Indicator (NDI).

In particular, for the sets of values p=0.083, s=0.5, Z=1/3 (Fig. 7a), and p=0.467, s=0.5, Z=1/3 (Fig. 11a), the phase plane
portrait was characterized by a ‘‘figure-of-eight’’ shape; a typical diagram is depicted in Fig. 12a which shows the
difference (dashed line) between the displacement time-history of the damaged beam (thick line) with respect to that of
the intact one (thin line), during one driven period; the dashed line represents the contribution of the prevailing super-
harmonic component to the dynamic response. The particular diagram refers to the case p=0.083, s=0.5, Z=1/3, to the third
harmonic component, and to the 2-D solid model, but it is representative of a more general behaviour which can be
observed in all the examined cases.

For the sets of values p=0.083, s=0.1, Z=1/2 (Fig. 6a), p=0.267, s=0.3, Z= 2 (Fig. 8a), p=0.267, s=0.5, Z=1/2 (Fig. 9a), and
p=0.467, s=0.3, Z=1/2. (Fig. 10a), a wiggle appears in the phase portrait due to rebounding of the contact surfaces during
the closure phase of the crack. Also in this case p=0.267, s=0.5, Z=1/2, the difference (dashed line) between the
displacement time-history of the damaged beam (thick line) with respect to that of the intact one (thin line), during one
driven period, is shown (Fig. 12b).

Also the spectral analyses highlighted the high nonlinearity of the response: for the system resonance the harmonic
components with the largest magnitude occurred at the natural bilinear frequency fb, Eq. (1), namely super-harmonics 3



0

-0.5

-0.25

0.25

0.5

-3 -2 -1 0 1 2 3

Displacement [m]·10-4

V
el

oc
ity

 [m
/s]

0.0

0.5

1.0

1.5

2.0

30 80 130 180 230 280 330 380

Frequency [Hz]

D
isp

la
ce

m
en

t a
m

pl
itu

de
 ·1

0-4
 

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-3 -2 -1 0 1 2 3

PL node displacement [m]·10-4

PC
 n

od
e 

di
sp

la
ce

m
en

t [
m

]·1
0-4

Fig. 8. Case p=0.27, s=0.3, Z=2 (2-D, thick solid line; 1-D, thin solid line; sdof, dashed line): (a) phase portraits, (b) Fourier spectra, and (c) 2- D modal

line.

U. Andreaus, P. Baragatti / Journal of Sound and Vibration 330 (2011) 721–742 731
(odd) for Z=1/3 and 2 (even) for Z=1/2, and sub-harmonic 1/2 for Z=2. It is obviously noted that an undamaged beam is
characterized by linear behaviour (in regime of small displacements and deformations) and therefore exhibits the unique
harmonic component at the forcing frequency fF in the steady-state response, while the harmonic component at the
natural frequency is absent.

Furthermore, for fF5Min(fc, fo), other minor components were exactly fb+n fF (n= 71, 72,y) away from the major
component at fb, as already predicted by Chu and Shen [13] limited to the case of response analysis of bilinear single-
degree-of-freedom systems.

Thus, the sub- and super-resonances in the FFT spectra (unlike the single harmonic component of the undamaged case)
was assumed as a second qualitative NDI. This aspect was observed in Figs. 6b–11b, as far as both the super-harmonic
(Figs. 6b, 7b, 9b, 10b, 11b), and the sub-harmonic components (Fig. 8b) were concerned.

Even the modal lines of Figs. 6c–11c emphasized the nonlinear characteristics of the system response: indeed they
showed a curved shape and possibly exhibited an offset with respect to the origin. It is by the way reminded that the modal
lines of the undamaged system are rectilinear and pass through the origin. The nonlinear trend of the modal lines of the
cracked system was therefore assumed as a further (third) qualitative NDI, and noted in the Figs. 6c–11c, even if it was
more or less evident.

To sum up the above outlined observations, the presence of a breathing crack introduces nonlinear phenomena into the
system. They were evident in the phase portrait, in the FFT spectrum and even in the modal line. Their characteristics can
be represented by the so-called qualitative NDIs, namely:
�
 phase portrait distortions;

�
 sub- and super-harmonic components in the FFT spectrum; and

�
 curved shape of the modal line.
These indicators summarise the description of the nonlinear dynamics of the system and introduce to the damage and
identification procedure.
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4. Detection of the damage

In order to actually detect the crack presence, the nonlinear phenomena which were described in Section 3.2 and
represented by the qualitative NDIs have to be precisely estimated. This is the reason why three quantitative NDIs (C)
should be defined.

With reference to the sample phase portrait shown in Fig. 13, the deviation of the damaged system’s behaviour from the
linear one is denounced by the eccentricity ed of the orbit with respect to the origin on the displacement axis:

ed ¼
ddam

max�ddam
min

2
(11)

where ddam
maxand ddam

min are, respectively, the maximum and minimum displacements of the damaged system.
Moreover, defining the total excursion on the displacement axis as, Fig. 13,

D¼ dmax�dmin,

the variation:

Dv ¼Ddam�Dint (12)

of the total excursion Ddam of the damaged system with respect to the total excursion Dint of the intact system can give
another useful measure of the defective state.

Furthermore, as far as the frequency content of the damaged system response in the Fourier spectrum is concerned
(Figs. 6b–11b), the existence of n=1/Z=3, 2, 1/2 multiple (super-harmonic) or sub-multiple (sub-harmonic) components of
magnitude Hs and their relative amount

hr ¼
Hs

Hf
(13)

with respect to the amplitude Hf of the fundamental component n=1 denounces also presence and intensity of damage.
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So the quantitative NDIs are as follows:
�
 the trajectory eccentricity ed;

�
 the excursion variation Dv; and

�
 the harmonic amplitude hr.
Table 2 reports the values of the damage parameters for each position, severity, and harmonic component for the 2-D
model.

As it is clear by their definition, the NDIs values ed, hr, and Dv are equal to zero for the undamaged structure; in fact, the
orbit is centred in the origin of the phase plane (ed,=0) and only the fundamental harmonic does exist (hr=0) in the intact
beam; as regards Dv, if the beam remains in the undamaged state, the total excursion D=dmax–dmin does not change
(Dint=Ddam) and hence Dv=Ddam–Dint equals zero. Moreover, the NDIs parameters will grow up with increasing damage
level as it is possible to check by the examination of Table 2 and Figs. 14–16.

Indeed it is evident that the values of ed, Dv and hr will raise as the severity depth raises from 0.1 to 0.5. For example the
hr value of a beam with a crack positioned at 0.267 of its length and forced with a Z=1/2 harmonic will show an n=2 super-
harmonic whose normalized magnitude will be equal to 166% for the 0.1 severity, 241% for the 0.3 severity and 417% for
the 0.5 severity. In every case it is worthily noted that the absolute value is remarkable, even if the damage is small (i.e. 0.1
severity), confirming the reliability of the damage detection method and the appropriate choice of the quantitative NDIs.

Even if all the harmonic components n=3, 2, 1/2 associated to the investigated forcing frequencies Z=1/3, 1/2, 2, exhibit
an excellent sensitivity to the damage, they are capable of detecting the damage itself with different efficiencies through
the damage parameters of the proposed set W={ed, Dv, hr}. In order to compare the performances of the above mentioned
driving frequencies and response harmonics on the basis of the available numerical results, a special indicator is adopted:

Iðn,WÞ ¼
1

np

X
p

1

ns

X
s

Cðp,s,nÞ (14)

For brevity’s sake, the comparison is limited only to the 2-D model; this indicator is calculated for each one of the
harmonic components, and is defined by Eq. (14) as the average value of each one of the damage parameters, calculated
over the ns severities and the np positions; Table 3 reports the values which the indicator defined by Eq. (14) assumes for
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each harmonic component and each damage parameter. Thus, the forcing frequencies Z=1/2 and 2 seem the most suitable
candidates in order to detect the damage in an efficient way.

So far the whole damage detection procedure can be summarised as follows:
i.
 estimation of the first natural frequency fb of the structure via spectral analysis of the free vibration under impulsive
loading;
ii.
 excitation of forced vibration with the most efficient driving frequency Z=1/2, i.e. fF=1/2fb; and

iii.
 evaluation of an NDI, e.g. hr, whose value will detect the damage presence.



Fig. 13. Graphic illustration of the NDIs meaning.

Table 2
Values of the NDIs for the 2-D model.

Parameter ed (mm) Dv (mm) hr (%)

Position Severity Harmonic

0.083 0.1 3 �4.0 8.6 8.0

2 �140.0 218.0 188.2

1/2 �53.0 231.8 29

0.3 3 �40.3 118.1 93.5

2 �194.3 312.3 311.0

1/2 �96.2 369.5 221.4

0.5 3 �136.9 445.2 305.9

2 �270.4 651.8 439.0

1/2 �180.7 964.7 585.2

0.267 0.1 3 �2.6 5.1 2.1

2 �92.0 104.5 166.0

1/2 �9.1 129.8 9

0.3 3 �24.2 52.5 30.0

2 �180.2 225.8 241.0

1/2 �53.5 156.7 123.0

0.5 3 �91.2 367.4 287.0

2 �250.4 632.9 417.0

1/2 �143.9 718.1 489.0

0.467 0.1 3 �1.3 1.8 1.7

2 �66.9 85.0 159.0

1/2 �2 3.2 3

0.3 3 �12.6 16.6 28.0

2 �149.1 143 221.0

1/2 �11 24 5

0.5 3 �49.7 162.5 130.0

2 �223.9 550.9 384.0

1/2 �31.4 92.2 83.0
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The NDI hr is selected because it can be easily evaluated via spectral analysis of acceleration measurements made online
by means of simple devices like mass accelerometer, connected to the beam tip.

The numerical results discussed in Section 3 were obtained by harmonically forcing a beam model where crack
positions and lengths were fixed a priori; however, the quantitative NDIs herein defined can nevertheless be evaluated also
when only the numerical and/or experimental responses are known, without performing the analyses or the responses



Fig. 14. Eccentricity ed with respect to the origin in the phase portraits: (a) super-harmonic component 3, (b) super-harmonic component 2, and

(c) sub-harmonic component 1/2.
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having be independently provided. Thus, the crucial question ‘‘Is this structure intact or damaged?’’ can be easily answered
and the damage status of the structure assessed in any case by (i) using an accelerometer, (ii) measuring tip accelerations,
(iii) analysing the frequency content, and (iv) evaluating a simple damage indicator, provided that geometry and material
of the structure be known.
5. Construction of the calibration surfaces

Once the values of the damage parameters ed, Dv, and hr have been calculated (Table 2) for each one of the three
positions, severities, and harmonic components a priori fixed, calibration surfaces are constructed by interpolating the
damage indicators (DII).

In more details, least-squares fit to the values of the damage parameters W={ed, Dv, hr} reported in Table 2 for each one
of the harmonic components n¼ 3 2 1=2

n o
in the position-severity plane p–s generates quadratic surfaces of the form

Cn ¼ an,Cp2þbn,Cpsþcn,Cs2þdn,Cpþen,Csþ fn,C (15)

at the left hand side there is the level Cn, of the damage parameter belonging to the set W and corresponding to the nth
harmonic component; the numerical coefficients of Eq. (15) depend on both the number ‘‘n’’ of the harmonic component
and the type of the damage parameter, e.g. a¼ âðn,CÞ. The values of the coefficients of Eq. (15) are reported in Table 4.

In this way it is possible to generate the damage surfaces depicted in the three-dimensional Figs. 14–16. Such surfaces
numerically interpolate the calculated results and graphically represent the damage measures ed, Dv, and hr as functions of
the two spatial variables which geometrically characterize the crack, namely position p and severity s. In more detail, each



Fig. 15. Variation Dv of the total excursion in the phase portraits: (a) super-harmonic component 3, (b) super-harmonic component 2, and

(c) sub-harmonic component 1/2.
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figure illustrates the dependence of the relevant damage measure on the harmonic component at hand, namely super-
harmonic n=3 in Figs. 14a–16a, super-harmonic n=2 in Figs. 14b–16b, and sub-harmonic n=1/2 in Figs. 14c–16c.

As it has already said, the general trends exhibited in Figs. 14–16 are not surprising, inasmuch the values of the damage
measures tend to decrease with the distance from the cantilever root and with the vanishing of the crack length. It is now
possible to relate the orbit eccentricity (Fig. 14), excursion variation (Fig. 15), and harmonic amplitude (Fig. 16) not only to
the presence of damage (i.e. non-zero values of NDIs), but also to the position and even to the size of it.

6. Identification of the damage

Suppose now to know only the numerical and/or experimental responses of the presumably cracked beam: once
the damage status of the structure has been assessed, the next goal is to solve the inverse problem, i.e. to evaluate
the unknown position and depth of the defect, generally different of those used to construct the calibration surfaces.
In the following a procedure of crack location and size estimation is proposed which is based on using preliminary
constructed calibration surfaces (DII) of Section 5. So far, a procedure for damage identification may be designed according
to the following steps:
i.
 evaluate the bilinear frequency of the damaged system by spectral analysis of the acceleration time-history recorded at
the beam tip due to an impulsive force;



Table 3
Efficiency of driving frequencies to detect damage.

Damage parameter ed (mm) Dv (mm) hr (%)

Frequency Z=fF/fb

1/3 �40.3 130.9 98.5

1/2 �174.1 324.9 280.7

2 �64.5 298.9 172

Fig. 16. Relative amplitude hr in the Fourier spectra: (a) super-harmonic component 3, (b) super-harmonic component 2, and (c) sub-harmonic

component 1/2.
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ii.
 excite the structure with a driving force having frequencies equal to, respectively, one half and twice the bilinear
frequency of the system, which was estimated in the previous step; the values Z=1/2, 2 are selected because of their
better performances in damage detection, as it has been demonstrated in the previous Section 4;
iii.
 choice and evaluate the NDI hr; and

iv.
 solve the following system of two algebraic nonlinear equations:

ah,2p2þbh,2psþch,2s2þdh,2pþeh,2sþ fh,2 ¼ hr,2

ah,1=2p2þbh,1=2psþch,1=2s2þdh,1=2pþeh,1=2sþ fh,1=2 ¼ hr,1=2
) ð ~p, ~sÞ

(
(16)

the subscripts of the coefficients in Eq. (16) identify, respectively, the type (h stands for ‘‘relative amplitude of the
harmonic component with respect to the fundamental one’’, Eq. (13)) and the order of the harmonic component itself
(n=2, 1/2) affecting the damage parameter; the known terms at the right hand side are the values of the damage



Table 4
Coefficients of the quadrics Eq. (9).

Damage

parameter

Harmonic

component

a b c d e f

ed (mm) 3 �0.01396 0.03181 �0.01017 1.31129 �2.07608 �10.54260

2 �0.00797 0.05908 �0.00305 1.04937 �5.49759 �28.38590

1/2 �0.00989 0.04297 �0.00865 0.99393 �3.34188 �14.45560

Dv (mm) 3 0.06719 �0.14629 0.07812 �5.44546 6.29874 12.11200

2 0.04425 �0.16022 0.03668 �4.36159 11.98280 51.86510

1/2 0.11592 �0.29029 0.13940 �9.52081 14.07510 38.64150

hr (%) 3 0.03517 �0.08179 0.03986 �2.91915 3.92146 11.10210

2 0.01225 �0.09900 0.00585 �1.65809 9.14444 45.26370

1/2 0.05558 �0.15926 0.05803 �4.93372 9.64383 37.28650
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parameters calculated via numerical simulations and/or measured via experimental tests, in different cases with
respect to those used to generate the coefficients of Eqs. (16). The solution of the system equations (16) gives an
estimation of both position and severity ~p, ~sð Þ of the crack.
v.
 evaluate the confidence of the solution.

The confidence of such an approximate evaluation can be calculated by using the remaining two damage parameters ed

and Dv, the measure of which needs more sophisticated test instruments like Laser vibrometers and/or numerical

integration of acceleration time-histories:

ae,2p2þbe,2psþce,2s2þde,2pþee,2sþ fe,2 ¼ ed,2

ae,1=2p2þbe,1=2psþce,1=2s2þde,1=2pþee,1=2sþ fe,1=2 ¼ ed,1=2
) ð �p, �sÞ

(
(17)

aD,2p2þbD,2psþcD,2s2þdD,2pþeD,2sþ fD,2 ¼Dv,2

aD,1=2p2þbD,1=2psþcD,1=2s2þdD,1=2pþeD,1=2sþ fD,1=2 ¼Dv,1=2
) ðp

_
, s
_
Þ

(
(18)

The first subscript of the coefficients of Eqs. (17) and (18) denotes the number of the harmonic components (n=2, 1/2),
whereas the second subscript indicates the type of damage parameter: e for ‘‘eccentrity’’, Eq. (11), and D for ‘‘excursion’’,
Eq. (12); the known terms at the right hand side are the values of the damage parameters calculated via numerical
simulations and/or measured via experimental tests in different cases with respect to those used to generate the
coefficients of Eqs. (16)–(18). These further estimations �p, �sð Þ and p

_
, s
_

	 

of position and severity of the crack can provide a

measure of the reliability of the damage identification.
Each one of the second-order systems of Eqs. (16)–(18) generally has four solutions in the unknowns p and s; in the

problem at hand two solutions were complex conjugate and the other two real ones; in most cases only one of these real
solutions was physically or technically meaningful; in other cases the two real solutions allowed the strict confining of
the ranges where crack position and severity could be identified. For sample’s sake, two cases of practical interest were
examined in major detail. In the first case, the actual values p=10% and s=40% of position and severity of the crack were
detected (Section 4) by numerically or experimentally measuring hr,2=365.1% and hr,1/2=381.8%, ed,2=256.1 mm,
ed,1/2=125.8 mm, Dv,2=439.3 mm, and Dv,1/2=617.3 mm. Then, the identification procedure of Section 6 yielded two real
solutions, the first of which was
system (16)-pffi9%, sffi39%,
system (17)-pffi12%, sffi41%, and
system (18)-pffi7%, sffi37%.
A simple statistical processing led to confidence intervals (95%) of p=9.372.3% and s=3971.8%.
The second solution was
system (16)-pffi60%, sffi92%,
system (17)-pffi59%, sffi94%, and
system (18)-pffi56%, sffi88%.
Thus, confidence intervals (95%) were p=58.371.9% and s=91.372.8%. It is evident that only the first solution is
technically acceptable because it lays below a reasonable upper limit of crack severity, beyond which the beam falls
dramatically apart. It is worth to be noted that the actual damage p=10% and s=40% is comprised within the confidence
interval 9.3�2.3opo9.3+2.3 and 39–1.8oso39+1.8.

As a further example, the actual damage characterized by position p=40% and severity s=5% was detected (Section 4)
by numerically or experimentally measuring hr,2=41.7% and hr,1/2=79.2%, ed,2=44.5 mm, ed,1/2=13.1 mm, Dv,2=13.8 mm,
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and Dv,1/2=173.6 mm. Then, the identification procedure of Section 6 yielded two real solutions, the first of
which was
Tab
Com

J

1

sd
system (16)-pffi56%, sffi8%,
system (17)-pffi54%, sffi9%, and
system (18)-pffi52%, sffi8%.
Thus, confidence intervals (95%) were p=5471.8% and s=8.370.5%.
The second solution was
system (16)-pffi39%, sffi5%,
system (17)-pffi38%, sffi4.5%, and
system (18)-pffi38%, sffi4.5%.
Thus, confidence intervals (95%) were p=38.370.5% and s=4.770.3%.
In this case, there were two real and acceptable solutions, but they were confined within a restricted range of values

38.3–0.5opo54+1.8, 4.7–0.3oso8.3+0.5.
It is worth noting that the first case represented severe damage inasmuch the crack was near the built-in end of the

beam and almost half of the cross-section high; in the second case, the crack had small size and was far from the built-in
end, a configuration usually difficult to be detected. In any case, the narrow ranges of identified position and severity
allowed to limit the observation field. Furthermore, it was observed that the actual damage was comprised within the
confidence intervals and hence considering solutions of systems (17) and (18) beside that of system (16) allowed an
improvement of the confidence of the damage estimation.

At the end, the complete question ‘‘Is this structure intact or damaged and, if it is damaged, how much are the damage
position and size?’’ has been actually answered by the above described procedure of identification. A cracked structure can
be detected and identified by a common accelerometer, simple measurements and easy numerical computations.

Of course, if the geometry and material assumptions on which this method is based are not satisfied, the approximation
of the defect position and severity could not pick the real values with sufficient accuracy. For instance, the given
assumption of non-propagating crack running through the whole width of the beam is often encountered in engineering
practice and widely adopted in Literature. If it was non-satisfied, the values of the NDIs and especially Dv and ed could not
match at the desired extent with the coefficients of the quadratic equation corresponding to crack not running through the
whole width.

7. Comparison among structural models

It is worthily noted that the three structural models of Sections 2.2, 2.4, and 2.5 provided results which are in good
agreement with each other whatever the representation used (phase portrait, Fourier spectrum, modal line), as
demonstrated in Section 3.2 and showed in Figs. 6–11. Indeed the three models exhibited the same qualitative dynamic
behaviour and the previous considerations, analyses and procedures, which have been developed with reference to the 2-D
solid model for synthesis’sake, may be implemented by using the 1-D beam and sdof oscillator models as well.

Thus, it seemed not useless to compare the performances of these simpler structural models with respect to the results
provided by 2-D one, assumed as reference model; obviously, the analyses conducted by means of the 1-D beam and the
bilinear sdof oscillator models needed much less computational requirements in terms of time consuming and memory
occupying than those worked out by using the 2-D FEM solid model. While it was already observed that all the three
models are in very good agreement with each other from the qualitative point of view, a quantitative estimation of their
reliability is sought: a special indicator has been adopted which allows to evaluate the relative differences affecting the
behaviours of the simpler models with respect to the more demanding 2-D model. For each one of the two models of the
subset M={1-D FEM, sdof}, this indicator is defined as the average value calculated over the nC Nonlinear Damage
Indicators, the nh harmonics, the ns severities, and the np positions:

JðM,p,s,n,WÞ ¼
1

np

X
p

1

ns

X
s

1

nh

X
h

1

nC

X
C

CðM,p,s,nÞ�Cð2D,p,s,nÞ

Cð2D,p,s,nÞ
(19)
le 5
parison among the structural models.

ed (%) Dv(%) hr(%) Average offset (%)

-D vs. 2-D 6 20 19 16

of vs. 2-D 10 41 27 27
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Thus, Eq. (19) yields one value of the indicator for each one of the two models 1-D FEM e sdof: J(1-D)ffi16% and
J(sdof)ffi27%, which show that the 1-D FEM beam performs better than the sdof oscillator, as it could be expected.
Furthermore, the 1-D FEM beam is able to catch with sufficient accuracy also the quantitative aspects of the 2-D FEM solid,
even by using a very limited number of beam elements, whereas the bilinear sdof model overestimate at some extent the
response of the 2-D solid model, due to the influence of the upper modes of vibration of the continuous beam.

The values of the indicator J are reported in Table 5 for 1-D and sdof models as well as the average differences between
the models for every NDI.

8. Conclusion

Many of the researchers in the cited Literature assumed in their work that the crack in a structural element is open and
remains open during vibration. This assumption was made to avoid the uncomfortable drawbacks arising from the
nonlinear characteristics presented by introducing a breathing crack. It is evident that using an open-crack model
assumption to interpret vibration measurements for a fatigue-breathing crack will lead to the incorrect conclusion that the
crack severity is smaller than what it really is.

It was shown both numerically and experimentally that the appearance of a fatigue crack has a stimulating influence
on the appearance of a new set of nonlinear properties, which do not occur in the initially undamaged structure
(self-excitation of sub-harmonic regimes, appearance of even- and odd-numbered harmonic components in frequency
spectrum of n/1-order super-harmonic regime). In particular, the characteristics of nonlinear distortion of vibrations at
super-harmonic resonance of the beam of order 3/1 and 2/1 (i.e. third and second harmonics) are very sensitive to the
presence of closing crack; moreover, the appearance of nonlinear effects when the structure is harmonically excited at a
frequency, which is a sub-multiple of a natural frequency, can be used to detect the presence of very small closing cracks.

This paper presents an analysis of bending harmonic forced vibrations of a cantilevered beam with a transverse one-edge
non-propagating closing crack. In the methods observed in the Literature compromises have been made either in
the representation of the physics of the nonlinearities in defective structures or in the complexity of the structure which can
be analysed. For example, finite element studies usually use a simplistic representation of the interface mechanics whereas
analytical studies require simple boundary conditions. Herein, the simulation of the harmonic forced vibrations of the beam,
a nonlinear finite element procedure has been developed with (a) two-dimensional solid model, (b) one-dimensional beam
model, and (c) single-degree-of-freedom system model. The two-dimensional model, though expensive, can be used to
simulate the nonlinear interface effects of partial depth breathing crack as a contact problem under dynamic conditions.
Furthermore qualitative and quantitative comparisons among the different models were illustrated in the paper.

In the present work, it was observed that even for a small crack, if the excitation frequency was approximately one-
third, one-half, and two times of the first natural frequency of the system, the relative amplitude of the third, second, and
one-half harmonics respectively became appreciably large and hence detectable. The description of these nonlinear
dynamic behaviours was synthetized by the definition of qualitative Nonlinear Damage Indicators (NDIs): the phase
portrait distortions, the super- and sub-harmonic resonances in the FFT spectra, the curved shape trend of the modal lines.
In order to improve the application of these indicators for the damage detection, three quantitative NDIs were proposed as
well: the orbit eccentricity ed, the excursion variation Dv, the harmonic amplitude hr.

Using these NDIs allowed to develop a new and highly sensitive vibration-based procedure for crack detection by
analysing super- and sub-harmonic components in the force response of a beam, which originated from a breathing crack.
It was shown that the detection sensitivity of the proposed nonlinear method was much higher than that one obtainable
from usual linear vibration procedures. Both super- and sub-harmonics components were in fact efficient indicators of the
crack presence and were used to improve the accuracy of vibration-based crack detection techniques. Moreover, a
systematic and complete identification procedure was developed to evaluate both the crack presence and the crack
position and depth. The core of this method was the Damage Indicators Interpolation (DII), the implementation of which
allowed to construct surfaces that related the crack position and depth to each one of the NDI value.

The proposed procedure, which required the driving force to be applied at the beam tip and the sensor to have only one
location, allowed to detect the presence of the crack and was used to estimate the crack parameters, i.e. to determine both
crack size and location. Only acceleration time-history was needed to detect the existence of the crack as well as to
establish the relationship between the nonlinear characteristics of the response with the crack depth; moreover, only few
measurements were needed to estimate the crack site. Furthermore, the use of acceleration signal facilitated remote
monitoring of the structure for fatigue cracks when the crack site was unknown. The numerical simulations worked out in
this study for samples’sake demonstrated that the proposed method was applied to detect small cracks with the lengths of
few percentual units of the cross-section.
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